A Motivic Snaith Decomposition

Viktor Kleen

ABsTRACT The filtration BGL, C ... € BGL,_; C BGL, is split by motivic
Becker—Gottlieb transfers in the motivic stable homotopy category over any scheme.
This recovers results by Snaith on the splitting of BGL,(C) in classical stable
homotopy theory by passing to complex realizations. On the way, we extend motivic
homotopy theory to smooth ind-schemes as bases and show how to construct the
necessary fragment of the six operations and duality for this extension.
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1. Introduction

Snaith [ ; ] described splittings of the natural filtrations on BGL,(C) and BGL,,(H)
in the classical stable homotopy category, using Becker—Gottlieb transfer associated with the
normalizer of a maximal torus in GL,,. He also obtained coarser results for BGL,,(R) and for
finite fields. Using transfers associated with the block-diagonal subgroup GL; X GL,_; C GL,,
Mitchell and Priddy [ ] recovered Snaith’s results on BGL,(C) and BGL, (H) and improve
the ones on BGL,(R) and BGL,(F;). In fact, the applicability of this approach to the case of
BGL,(C) was first noted by Richter.

In this paper, we prove an analogue of Snaith’s, Mitchell and Priddy’s and Richter’s result in
the motivic stable homotopy category of an arbitrary base scheme S:

THEOREM 1.1. Over any scheme S, there is a Pg—stable splitting BGLy, + ~ /72, BGL;/BGL;_; of
the natural filtration BGLy C ... C BGLy,—; C BGL,,.



Using topological realization, for S = Spec(C) or S = Spec(R), this recovers the classical story.
Our approach mirrors the technique of Mitchell and Priddy [ ], utilizing Becker—Gottlieb
transfers associated with the block-diagonal inclusion BGL; X BGL,_; — BGL,. We make
essential use of the six operations approach to the motivic Becker—Gottlieb transfer introduced
by Hoyois [ ]. The main technical difficulty in our approach to the splitting of BGL,, 4 is
the fact that BGL,, is not representable by a scheme. However, it is representable by a smooth
ind-scheme.

OverRVIEW To obtain a transfer for the inclusion BGL; X BGL,_; — BGL,, we use an explicit
model of BGL, as the infinite Grassmannian Gr,. We give an explicit presentation of the
inclusion BGL; X BGL,,_; — BGL,, as a smooth Zariski-locally trivial bundle U — Gr,, over
the ind-scheme Gr,. Then we construct a symmetric monoidal presentable stable co—category
87 (Grp,) which accepts a functor from smooth ind-schemes over Gr,, and supports a functor
SH (Gr,) — S#(S). The motivic Becker—Gottlieb transfer of U — Gr,, is then defined
to be the image in §7(S) of the monoidal trace of U in S# (Gr,,). We appeal to a result of
May [ ] to see that this construction of Becker-Gottlieb transfers has a Mayer—Vietoris
property. This enables us to show that, just like in classical topology, the transfers of the
inclusions BGL; X BGL,,—; C BGL,, can be used to split the natural filtration on BGL,,. Since
the transfer is a stable phenomenon, this splitting is naturally only found in the stable motivic
world.

NotaTioN In what follows S will be an arbitrary base scheme. For a scheme X we write 7 (X)
for the co—category of presheaves of spaces on Smyx localized at Nisnevich-local equivalences
and projections Y X A! — Y. It is a presentable co-category in the sense of [ ]. We refer
to #(X) interchangably as the A!~homotopy category of X or the motivic homotopy category
of X. The associated pointed co—category will be denoted by # +(X). Inverting (P!, c0) € % o(X)
with respect to the smash product yields the stable motivic homotopy category S#(X) of X. It
is a symmetric monoidal, presentable, stable co—category in the sense of [ ]. An account of
this definition of #(X), # «(X) and $# (X) for noetherian schemes and its equivalence to the
approach of [ ] is given in [ ], the generalization to arbitrary schemes can be found
in [ , Appendix C].

We follow [ ] in writing X/S € S#(S) for the P!-suspension spectrum of a smooth
scheme X over S. We will write X, € #.(S) for X with a disjoint basepoint added. We
sometimes do not distinguish notationally between the pointed motivic space X, € #.(S) and
its P! -suspension spectrum X /S = X, € SH#(S).

When dealing with ind-schemes we have elected not to speak of “ind-smooth” schemes and
morphisms. Instead, for us a smooth morphisms between ind-schemes will be what is usually
called an ind-smooth morphism, namely a formal colimit of smooth morphisms.
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2. Becker-Gottlieb Transfers in Motivic Homotopy Theory

Becker and Gottlieb introduced their eponymous transfer maps in [ ] as a tool for giving
a simple proof of the Adams conjecture. They considered a compact Lie group G and a fiber
bundle E — B over a finite CW complex with structure group G and whose fiber F is a closed
smooth manifold with a smooth action by G. There is a smooth G-equivariant embedding F C V
of F into a finite dimensional representation V of G. There is an associated Pontryagin-Thom
collapse map SV —— F” where v is the normal bundle of F in V and FV is its Thom space.
Denoting by 7 the tangent bundle of F one obtains a morphism

SV F — F® ~F ASY

in G-equivariant homotopy theory. Assuming that E — B is associated to a principal G-bundle
E — B one gets a map

ExSY — Ex(F, ASY)
and passing to homotopy orbits with respect to the diagonal G-actions yields the transfer map
B; — E, in the stable homotopy category.

This construction of the transfer was generalized in [ ]. The map S — F, A SV arises
from a duality datum in parameterized stable homotopy theory over the base space B.

DEFINITION 2.1. A duality datum in a symmetric monoidal category consists of a pair of objects
X and X" with morphisms 1 % X ® X¥ and X" ® X —> 1 such that the compositions

X coev®id X ® Xv QX id®ev X
and
Xv id®coev X\/ QX ® X\/ ev®id X\/

are identities. In this situation X" is said to be a right dual of X and X is said to be a left dual of
XV.If X is additionally a right dual of X", then X is said to be strongly dualizable with dual X".

A duality datum in a symmetric monoidal co—category 6 is a duality datum in the homotopy
category h'G, see [ , section 4.6.1].

REMARK 2.2. In [ ], Levine defines a dual XV = Map(X, 1) for any object X in a closed
symmetric monoidal category. Then X is called strongly dualizable whenever the induced
morphism XV ® X — Map(X, X) is an equivalence. By [ , Lemma 4.6.1.6] this coincides
with our definition.



Dold and Puppe show that, for a fiber bundle E — B with fiber a compact smooth manifold,
there is a duality datum in the homotopy category of B—parameterized spectra. It exhibits the
fiberwise Thom spectrum of the fiberwise stable normal bundle to E as a dual of the suspension
spectrum of E. They then show that the transfer in [ ] is an instance of the following
general construction.

DEFINITION 2.3. In a symmetric monoidal co—category 6, suppose that an object X is equipped
with a map A: X — X ® C for some other object C. Furthermore, suppose that X is strongly
dualizable. The transfer of X with respect to A is defined as the composition

trya: 122 X @ XV SV, v g x WOA Vg x o 19 CcxC.

If there can be no risk of confusion we write trx = trx a.

In Appendix A we construct a symmetric monoidal co—category S# (B) for every smooth
ind-scheme B over a base scheme S. This enables us to extend the definition of the motivic
Becker—Gottlieb transfer in [ 1.

DEFINITION 2.4. For a smooth map f: E — B between smooth ind-schemes over S with
E/B € S#(B) strongly dualizable we define the relative transfer Tr(f/B): 13 — E/B as
follows: Applying f; to the diagonal E — E Xp E gives a morphism A: E/B— E/BAE/Bin
8% (B) and we set Tr(E/B) = Tr(f/B) = trg/pa-

Additionally, since 7: B — S is a smooth ind-scheme, we can define the absolute transfer of

f as
Tr(f/S) = m«(Tx(f/B)): E/S — B/S.

ProprosITION 2.5. The motivic Becker—Gottlieb transfer enjoys the following properties.
(i) The transfer is additive in homotopy pushouts: Suppose X, Y, U and V are smooth ind-
schemes over a smooth ind-scheme B over S. Further suppose that there is a homotopy
cocartesian square

X/B —— U/B
| |
V/B—— Y/B

in S# (B). Assume that Y /B, U /B and V | B are strongly dualizable. Then Tr(Y /B) is a sum
of the compositions

15 YB), 1 B — v/B

15 2B v B L Y/B
and

15 2XB B y/B
in S#(B).



(ii) The relative transfer is compatible with pullback: If p: B — B and f: E — B are maps
of smooth ind-schemes over S and E /B is strongly dualizable in S¥ (B) then the pullback
p*(E/B) ~ (E xg B")/B’ is strongly dualizable in S¥ (B’) and Tr(p* f /B’) ~ p* Tr(f/B).

(iii) The absolute transfer is natural in cartesian squares: If

El —— E

I ’J Jf

B —— B

is a cartesian square of smooth ind-schemes over S and the vertical maps are smooth, then
the square

E'/S — EJS
Tr(f'/Sﬁ TTr(f/S)
B'/S — BJS

commutes in S (S).

To prove part (i) of Proposition 2.5 we appeal to a general additivity result of May’s. In the
context of symmetric monoidal triangulated categories, [ ] proves that the transfer is
additive in distinguished triangles. However, since duality in symmetric monoidal co—categories
is characterised at the level of homotopy categories, May’s theorem admits the following
reformulation.

THEOREM 2.6 (] , Theorem 1.9]). Let 6 be a symmetric monoidal stable co—category and
let X — Y —— Z be a cofiber sequence in 6. Assume C € B is such that _®C preserves cofiber
sequences. Suppose that Y is equipped with a map Ay: Y — Y ® C and that X and Y are
strongly dualizable. Then Z is strongly dualizable and there are maps Ax and Az such that

X Y zZ

[ax |ar |22

X®C —YQ®C — ZQ®C

commutes. Furthermore, we have try p, = trx a, +1trz a, in m Map¢(1,C).

Proof of Proposition 2.5, (i). The homotopy cocartesian square induces a cofiber sequence

U/BVV/B—Y/B— S'AX/B



in S# (B). Shifting this sequence yields and introducing diagonal maps gives a diagram

X/B U/BVV/B Y/B
le lAUVAV
X/BAX/B (U/BAU/B)V (V/BAV/B) Ay

l(l) l@)

X/BAY/B——— (U/BVV/B)AY/B——— Y/BAY/B

in which the outer two rows are cofiber sequences and the maps (1) and (2) are induced from
the maps X/B— Y/B,U/B — Y/B and V/B — Y/B respectively. Then we can conclude
using Theorem 2.6. O

Part (ii) of Proposition 2.5 is proven in [ , Lemma 1.6]. We formulate the proof of part
(iii) as a lemma.

LEMMA 2.7. Let S be a scheme and B and B’ smooth ind-schemes over S. Suppose that f: E—— B
is smooth with E/B € S# (B) strongly dualizable and

i’

E ——
b
B ——B
is cartesian. Then the square
E/s 15, s
Tr/s)| [
B’/S ST B/S
is homotopy commutative.

Proof. Write p: B — S and q: B — S for the structure morphisms. There is a natural
transformation pyi* — g defined as the composition

.% unit k% * counit
PelT —— psl q Qs = Psp qs — qx.

Consequently, we obtain a homotopy commutative diagram

’ * T ,/B’) Pir% L% % ’
B[S = psp*is Lp#f#z f*q"1s =E'/S

H [

Sk »i* Tr(f/B) -k %k
peitqts LT b fprgta

l |

BS = qu4"1s — o Gefof 0715 = E/S.



Chasing through the definition of psi* — ¢ shows that the leftmost composite vertical map
is i/S and that the rightmost vertical map is i’/S. O

Finally, we will need some tools to understand when a smooth morphism E — B of smooth
ind-schemes over S determines a strongly dualizable object E/B in S# (B). We have the following
formulation of motivic Atiyah duality.

THEOREM 2.8 (see [ 1. [ 1, [ 1, [ D). If Y — X is a smooth and proper
morphism of schemes, then Y /X € S# (X) is strongly dualizable.

Because the property of being strongly dualizable is formulated in the homotopy category, it
is immediate that any smooth scheme Y — X such that Y/X is A'-homotopy equivalent to a
smooth and proper scheme over X defines a strongly dualizable object in S (X). Furthermore,
dualizability is local in the following sense.

THEOREM 2.9 ([ , Proposition 1.2, Theorem 1.10]). Let B be a scheme over S. Suppose that
E € S#(B) and there is a finite Nisnevich covering family {j;: U; — B} and that j;E € S# (U;)
is strongly dualizable. Then E is strongly dualizable as well.

If E — B is a Nisnevich—locally trivial fiber bundle with smooth fiber F and B is smooth
over S, then E/B is strongly dualizable in S# (B) if F/S is strongly dualizable in S#(S)

3. Transfers of Grassmannians

DEeFINITION 3.1. The ind-scheme Gr, is the sequential colimit of the Grassmannians Gr,(n) of
r—planes in n—space along the canonical closed immersions Gr,(n) —— Gr,(n + 1).

It is well known that Gr, is a model for BGL, in the A'~homotopy category. In fact, let
U,(N) be the scheme of monomorphisms 6" — ON. Along 6N @ 0 c GN*!, there are
closed embeddings U,(N) —— U,(N + 1) and [ , Proposition 4.3.7] shows that the colimit
U,(o0) = colimy U,(N) along these embeddings is contractible in #(S). Also, the quotient
U,(N)/GL, is isomorphic to Gr,(N) and consequently U,(o0)/GL, = Gr, is a model for BGL,.

Direct sum defines a morphism U,(N) X U,_(N) — U,(2N) which is equivariant with
respect to the block diagonal inclusion GL, X GL,_, — GL,,. Passing to the colimit N — oo
and taking quotients yields a morphism

irn: Gr, X Grp—p — Grp,.

This morphism is equivalent in #(S) to the map BGL, X BGL,_, — BGL, induced by the
block diagonal inclusion GL, X GL,—, C GL,. The goal of this section is to develop a partial
inductive description of the absolute transfer tr,, ,: Gr, . — Gr, + A Grp—p 4 of i, , in SF(S).
For this purpose a different version of i, ,, in #(S) will be more convenient.



LEMMA 3.2. In #(S) there is an equivalence Gr, X Gr,_, — U,(c0)/(GL, X GL,,_,). Along this
equivalence, i, , corresponds to the quotient

m: Un(OO)/(GLr X GLn—r) — Un(oo)/GLn = Grn
by GL,,.

Proof. Writing ¢: U,(N) X U,_,(N) — U,(2N) for the map induced by taking direct sums, we
obtain a commutative diagram

Up(N) X Up—(N) —————— Up,(2N)

! |

Gr,(N) X Grp—(N) — Un(2N)/(GL, X GLp—;)

T

Gr,(2N).
Passing to the colimit N — oo the horizontal maps become equivalences. O

LemMA 3.3. The morphism i, , is a Zariski-locally trivial bundle over Gr,,. Its fiber is the quotient
GL,/(GLy X GLy_,).

Proof. By construction, the morphism i, , is isomorphic to the colimit of the quotient maps
U,(N)/(GL, X GLy—;) — U,(N)/GL,, = Gr,(N). But these are all Zariski-locally trivial with
fiber GL, /(GL, X GL,_,). O

We note that GL,,/(GL, X GL,_,) is equivalent to Gr,(n) in #(S) and this equivalence is
compatible with the respective GL,, actions. This is shown in [ , Lemma 3.1.5] and implies
in particular that the image in S#(Gr,) of the associated bundle U,(c0) x%!» Gr,(n) — Gr,
is equivalent to that of the quotient U,(c0)/(GL, X GL,-,) — Gr,,.

LEMMA 3.4. The morphism E Up(0)/(GL, X GL,—,) — Gr,, defines a strongly dualizable
object G, € S#(Grp,).

Proof. By Lemma A.3 it will be enough to show that the pullback i: E — Gr,(N) of i, ,
along the inclusion Gr,(N) — Gr, defines a dualizable object in S#(Gr,(N)) for all N.
But, by Lemma 3.3 the morphism i is a Zariski-locally trivial fiber bundle over Gr,(N) with
fiber X = GL,/(GL, X GL,—,). Hence, to show that i defines a strongly dualizable object in
S8# (Gr,(N)), by Theorem 2.9 it is enough to show that X /S € S#(S) is strongly dualizable.
But we have seen that X =~ Gr,(n) in #(S) and therefore also in S#(S). The scheme Gr,(n)
is smooth and proper over S, so motivic Atiyah duality, Theorem 2.8, implies that Gr,(n)/S and
therefore also X /S is strongly dualizable in S#(S), see for example [ , Proposition 1.2]. O



LEmMA 3.5. Suppose r < n. The open complement of the closed immersion Gr,(n — 1) —— Gr,(n)
is the total space of an affine space bundle of rank n — r over Gr,_1(n — 1).

Dually, the complement of the closed immersion Gr,_i(n — 1) —— Gr,(n) is the total space of
an affine space bundle of rank r over Gr,(n — 1).

Proof. Suppose Spec(A) is an affine scheme mapping to S. On Spec(A)-valued points, the
inclusion Gr,(n — 1) < Gr,(n) is given by considering a projective submodule P of A" ! as a
submodule of A" = A" ! @ A. It follows that the complement U of Gr,(n— 1) has Spec(A)-valued
points

U(Spec A) = {P C A™ : P is projective of rank r and P ¢ A"! @ 0}.

Given P € U(Spec A), the module P N (A""! @ 0) will be locally free of rank r — 1. This gives a
map ¢: U — Gr,_1(n— 1) which is trivial over the standard Zariski—open cover of Gr,_1(n—1)
with fiber A"

The dual statement is proved similarly. In fact, the bundle V.— Gr,(n — 1) in question is
the tautological r-plane bundle on Gr,(n — 1). O

The decomposition Gr,(n) = U U V of the last lemma yields a homotopy cocartesian square

U\NGr,_1(n-1)=UNV — V=Gr,(n-1)

! !

Gr,_1(n—1)~U —— Gr,(n)

in the A'-homotopy category #(S). It is immediate that this decomposition of Gr,(n) is stable
under the action of GL,,_; X1 C GL,,. We can therefore pass to the bundles over Gr,_; associated
to the universal GL,,_;-torsor U,,_;(c0) over Gr,_; and obtain a homotopy cocartesian square

(Un—l(oo) XGLn_l (U N V))/Grn—l Gr,n—l

| l

Gr—l,n—l (Un—l(oo) XGL"_I Grr(n))/Grn—l

in 8%((31‘,1_1).

PROPOSITION 3.6. Suppose r < n and consider the composition

.G el Gy 7 Gryy A G
@:Grp_1 4 — Grpy —— Gy AGry—p 4

where incl is given by the assignment P —— P & A on Spec(A)—valued points. Then there is a
map ¥ : Grp_y y+ — Gry_1 4+ A Grp—, 1 in S#H(S) such that ¢ is the sum of the compositions

trp-1,r id A incl
Gry-1,+ — Gry + AGry—1—p+ —— Gry 4 AGry—p 4

trn-1,r-1 incl A id

Gry-1,+ Gryo1,+ AGry—p —— Grp y AGrpp 4



and
v incl Aid
Gryo1,+ — Grp_1 - AGrppy —— Grp o AGrp_y 4.
Proof. Consider the homotopy pullback

E = U,_1(c0) xC-1 Gr,(n) —— Gr, X Grp,_,

| |

Gr,—1 Gry,

incl
in #(S). By the discussion following Lemma 3.5 we obtain a cofiber sequence
X/Grpy — Grn-1VGroin-1 — E/Gry

in S#(Grp,—_1) where X = Up,_1(c0) xC»-1 (U N V). Theorem 2.6 then shows that

tI.E/Grn—l = trGr,n—l + trGr—l,n—l - trXv/Grn—l

in S# (Grp,—1). Passing to the absolute transfer and using Lemma 2.7 yields that ¢ is the sum of
the compositions

trn-1,r id A incl
Gry—1,+ — Grp  AGrp—1—p+ —— Grp 4 AGry—p

trp—1,r-1 incl A id
Gry1,+ ANGryppy ——— Gry 4 AGrp_, 4

Grp-1,+
and

Grn_1’+ — X+ — Grr,+ /\ Grn_r’+

in S#(S). Here, the map X, — Gr, + A Gr,,_, 4 is obtained from the inclusion U NV C Gr,(n)
by passing to associated bundles. Now, this inclusion factors through the inclusion of U into
Gr,(n). By Lemma 3.5 the inclusion Gr,_;(n — 1) C U is an A'-equivalence, being the zero
section of an affine space bundle. Therefore X, — Gr, 1 A Gr,_, ; factors through the map
incl Aid: Gry_1,+ AGry—y + — Grr 4 AGr,_, ;. This way we obtain the map i and the required
decomposition of tr, , o incl. O

4. Proof of the Theorem

We have the filtration
i1 is i i
Gr0’+ — Gr1,+ —_— ... *n> Grn’_'. —_— ... 4m> Grm,_'.

and we have seen that for r < n the map i, ,: Gr, X Gr,_, — Gr, admits an absolute

transfer tr,, ,: Gr,+ — Gr, + A Gry,_, + in the motivic stable homotopy category S (S).
Write f, ,: Gr, + — Gr, ; for the composition

try,» proj
Gr,+ — Gr, + AGry_p o — Gr, 4

10



and ¢, , for the composition

Grp,+ S, Gr, + —> Gr,/Gry_;.

LEMMA 4.1. With notation as above, for r < n the compositions

i Su,r
Grp-1+ — Grp+ — Gr, + — Gr,/Gr,—4

and

fn-1,
Gry_1+ — Gry — Gr, /Gr,_;

coincide.

Proof. By Proposition 3.6 the composition f, , © i, is a sum of two compositions
trn—1,r id A incl proj
Gry—1,+ —— Gry + AGrp_y_py —— Grp 4 AGrpy_p y — Grp 4

and

incl Aid proj
Grp-1,+ — Gr_1,+ ANGrypp s —— Grp 4 AGry—p + — Grp 4

in S#(S). But the composition
Gry_1.+ ndl, Gr, + — Gr,/Gr,_;
vanishes. Therefore, f;, , o i,, coincides with the composition

fn—l,r
Gry-1,+ — Gr, . — Gr,/Gr,_4

in S#(S).

Proof of Theorem 1.1. Proceeding by induction on n, assume that

n-1 n-1
= \/ Pn-1,r: Grp-1,4 — \/ Gr, /Gr,_;
r=0 r=0

is an equivalence in SF(S). Because of Lemma 4.1 we have a commutative diagram

Grp,+
ln

n-1
Grp-1,+ > \/ Gr, /Gr,_;
r=0

11



where &’ = :’;01 n.r- It follows that ! 0 @’ 0 i, ~ id, i. e. i, admits a left inverse. That is to
say, the cofiber sequence

Grp-1.+ LN Gry,+ — Gr,/Grp_q
splits and yields an equivalence

(@'Y )WVon,n
Grp,y ——— Grp—1.+ V Gr, /Gr,—q

since ¢, 5, is by definition the canonical projection. Post-composing with @ V id then shows that
the stable map ®" V ¢, ,: Gr,,+ — /-, Gr,/Gr,_; is an equivalence in S#(S) as well. O

A. Stable Motivic Homotopy Theory of Smooth Ind-Schemes

We freely use the theory of presentable co—categories as developed in [ , section 5.5.3]. The
co—category of presentable co—categories with left adjoints as morphisms is denoted P+ while
the co-category of presentable co—categories with right adjoints as morphisms is denoted %X,
There is an equivalence P+ ~ (PR)°P of co-categories which is the identity on objects and
sends a left adjoint functor to its right adjoint. Both % and %R are complete and cocomplete
and the homotopy limits in both % and R coincide with homotopy limits in the co—category
of co—categories.

DEFINITION A.1. A smooth ind-scheme over S is an object of Ind(Smyg), the co—category of
ind-objects in the category of smooth schemes over S with arbitrary morphisms between them.
A morphism of ind-schemes is smooth if it can be presented as a colimit of smooth morphisms
in Smg.

The goal of this section will be to generalize the definition of the stable motivic homotopy
category 87 to smooth ind-schemes over S. Our approach is to use part of the six functor
formalism for S#, as established in [ ; ] for noetherian schemes and extended to
arbitrary schemes in [ , Appendix C]. An overview of the standard functorialities, at least
at the level of triangulated categories, can be found in [ ]

The first functoriality of S# can be summarized as follows. For every morphism f: X — Y
between smooth schemes over S we have an adjunction

fSHX) = SH(Y): f.

between the stable presentable co—categories S# (X) and SZ(Y). These adjunctions assemble
into functors S#™*: Smgp — Pl and 8%, : Smg — PR which are naturally equivalent
after composing with the equivalence P+" ~ (PR)°P_If f: X — Y is smooth, then there is
an additional adjunction
— %
fe: SHY) L SHX): f.

12



These assemble into a functor S#s: Smg gy — P! from the wide subcategory of Smg
consisting of smooth morphisms between smooth schemes over S. There are various exchange
transformations associated with a cartesian square

in Smg, of which we only mention the transformation
Exi: s —p'fe

when f and hence g is smooth. More details on these exchange transformations may be found

in [ 1.

Because PR is cocomplete, the functor S¥ ., naturally extends to a functor
8. : Ind(Smg) — PR

and we obtain a functor

SH*: Ind(Smg)®? — Prl

by again composing with the equivalence P! =~ (FrR)op,
More explicitly, if (X;);er is a filtered diagram of smooth schemes over S and X = colim; X;
as an ind-scheme over S, then

S#H*(X) = holimS#H*(X;) and SH.(X) = hocolim 8# .(X;).

Note that SH*(X) and S#.(X) are equivalent co—categories since homotopy limits along
left adjoints in P+ correspond to homotopy colimits along their right adjoints in %X, see
[ , section 5.5.3]. This description of S#(X) also shows that it inherits the structure
of a closed symmetric monoidal, stable, presentable co—category, see [ , section 3.4.3,
Proposition 4.8.2.18].

The adjunction f* 4 f. for a morphism f: X — Y of ind-schemes is obtained by presenting
f as a colimit of maps f;: X; — Y; between schemes over S and then taking f* to be the
functor induced on the homotopy limits in P+ and f, the functor induced on the homotopy
colimits in PR,

It remains to construct the extra left-adjoint f; for a smooth map f between ind-schemes
over S. First, a morphism f: X — Y between ind-schemes is smooth if and only if it is a
filtered colimit of smooth maps f;: X; — Y;. Each f;* admits a left adjoint f;+ and since " is
stable under limits, the functor f*: S#*(Y) — S#*(X) admits a left adjoint as well. That is
to say, S#*: Ind(Smg)°® — Prl restricts to a functor S#*: Ind(Smg)em — P+X from the

13



wide subcategory of Ind(Smg) consisting of smooth maps between smooth ind-schemes over S.
Composing with the equivalence P+t ~ (®)°P then yields the functor

SH4: Ind(Smg)em — Prl.
In summary, we have the following proposition.

PROPOSITION A.2. For every ind-scheme X over S, there is a closed symmetric monoidal, stable,
presentable co—category S#H (X). For every morphism f: X — Y between ind-schemes there is
an associated adjunction
* —
fre8#EY) L SHX): f.

with f* a monoidal functor. If f is smooth then there is an additional adjunction
fo: SH(X) = SH(Y): f*.

These data are functorial in f and admit various natural exchange transformations. If X happens
to be a smooth scheme over S then this version of S#(X) is naturally equivalent to the usual
construction.

Following [ ], for a smooth morphism f: X — Y of ind-schemes over S we define
XY = fu(1x) € S#(Y) where 1x denotes the monoidal unit in S#(X). In particular, if Y = S,
we see that any smooth ind-scheme X over S determines an object X/S € S#(S). If X is a
smooth scheme over S, then X/S is canonically equivalent to the P!~suspension spectrum of X
in S#(S); see [ , Lemma C.2].

LEMMA A.3. Suppose B is a smooth ind-scheme over S and E € S#(B). If B is presented as a
filtered colimit B = colim; B; of smooth schemes in Ind(Smg), let f;: B; — B be the canonical
map for each i. Then E € S¥(B) is strongly dualizable if and only if fE € S#(B;) is strongly
dualizable for every i.

Proof. This follows from [ , Proposition 4.6.1.11] since we have S# (B) ~ lim; S#(B;). O

PrOPOSITION A.4. Suppose an ind-scheme X is presented as a colimit X = colim; X; in Ind(Smg).
Then there is a natural equivalence X /S ~ hocolim; X;/S in S#(S).

Proof. Write 7: X — S and 7;: X; — S for the structure morphisms. Suppose Y € SH(S) is
arbitrary. Then we have natural equivalences

= holim Mapgg(x,)(1x;, 77; Y)
i

~ ho%im Mapgg(s)(mixlx;, Y)
= Mapgg(s)(hocolim X; /S, Y)
4

of mapping spaces. The Yoneda lemma implies that X /S = m41x = hocolim; X;/S in S#(S). O

14



This proposition allows us to extend the definition of the functor _/S: Smg — S#(S)
in [Lev18] to ind-schemes. The functor _/S: Smg — S#(S) extends uniquely up to nat-
ural equivalence to a functor _/S: Ind(Smg) — S#(S) because SH(S) is cocomplete. By
Proposition A.4 this coincides on objects with the previous construction z4(1x) for a smooth
ind-scheme 7: X — S.
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