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Abstract The �ltration BGL0 ⊂ . . . ⊂ BGLn−1 ⊂ BGLn is split by motivic
Becker–Gottlieb transfers in the motivic stable homotopy category over any scheme.
This recovers results by Snaith on the splitting of BGLn(C) in classical stable
homotopy theory by passing to complex realizations. On the way, we extend motivic
homotopy theory to smooth ind-schemes as bases and show how to construct the
necessary fragment of the six operations and duality for this extension.
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1. Introduction

Snaith [Sna79; Sna78] described splittings of the natural �ltrations on BGLn(C) and BGLn(H)
in the classical stable homotopy category, using Becker–Gottlieb transfer associated with the
normalizer of a maximal torus in GLn . He also obtained coarser results for BGLn(R) and for
�nite �elds. Using transfers associated with the block-diagonal subgroup GLi × GLn−i ⊂ GLn ,
Mitchell and Priddy [MP89] recovered Snaith’s results on BGLn(C) and BGLn(H) and improve
the ones on BGLn(R) and BGLn(Fq). In fact, the applicability of this approach to the case of
BGLn(C) was �rst noted by Richter.

In this paper, we prove an analogue of Snaith’s, Mitchell and Priddy’s and Richter’s result in
the motivic stable homotopy category of an arbitrary base scheme S :

Theorem 1.1. Over any scheme S , there is a P1S–stable splitting BGLm,+ '
∨m

i=1 BGLi/BGLi−1 of
the natural �ltration BGL0 ⊂ . . . ⊂ BGLm−1 ⊂ BGLm .
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Using topological realization, for S = Spec(C) or S = Spec(R), this recovers the classical story.
Our approach mirrors the technique of Mitchell and Priddy [MP89], utilizing Becker–Gottlieb
transfers associated with the block-diagonal inclusion BGLi × BGLn−i BGLn . We make
essential use of the six operations approach to the motivic Becker–Gottlieb transfer introduced
by Hoyois [Hoy14]. The main technical di�culty in our approach to the splitting of BGLn,+ is
the fact that BGLn is not representable by a scheme. However, it is representable by a smooth
ind-scheme.

Overview To obtain a transfer for the inclusion BGLi × BGLn−i BGLn we use an explicit
model of BGLn as the in�nite Grassmannian Grn . We give an explicit presentation of the
inclusion BGLi × BGLn−i BGLn as a smooth Zariski–locally trivial bundleU Grn over
the ind-scheme Grn . Then we construct a symmetric monoidal presentable stable∞–category
SH(Grn) which accepts a functor from smooth ind-schemes over Grn and supports a functor
SH(Grn) SH(S). The motivic Becker–Gottlieb transfer of U Grn is then de�ned
to be the image in SH(S) of the monoidal trace of U in SH(Grn). We appeal to a result of
May [May01] to see that this construction of Becker–Gottlieb transfers has a Mayer–Vietoris
property. This enables us to show that, just like in classical topology, the transfers of the
inclusions BGLi × BGLn−i ⊂ BGLn can be used to split the natural �ltration on BGLn . Since
the transfer is a stable phenomenon, this splitting is naturally only found in the stable motivic
world.

Notation In what follows S will be an arbitrary base scheme. For a scheme X we write H(X )
for the∞–category of presheaves of spaces on SmX localized at Nisnevich-local equivalences
and projections Y × A1 Y . It is a presentable∞–category in the sense of [Lur09]. We refer
to H(X ) interchangably as the A1–homotopy category of X or the motivic homotopy category
of X . The associated pointed∞–category will be denoted by H•(X ). Inverting (P1,∞) ∈ H•(X )
with respect to the smash product yields the stable motivic homotopy category SH(X ) of X . It
is a symmetric monoidal, presentable, stable∞–category in the sense of [Lur12]. An account of
this de�nition of H(X ), H•(X ) and SH(X ) for noetherian schemes and its equivalence to the
approach of [MV99] is given in [Rob15], the generalization to arbitrary schemes can be found
in [Hoy14, Appendix C].

We follow [Lev18] in writing X/S ∈ SH(S) for the P1–suspension spectrum of a smooth
scheme X over S . We will write X+ ∈ H•(S) for X with a disjoint basepoint added. We
sometimes do not distinguish notationally between the pointed motivic space X+ ∈ H•(S) and
its P1–suspension spectrum X/S = X+ ∈ SH(S).

When dealing with ind-schemes we have elected not to speak of “ind-smooth” schemes and
morphisms. Instead, for us a smooth morphisms between ind-schemes will be what is usually
called an ind-smooth morphism, namely a formal colimit of smooth morphisms.
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2. Becker–Go�lieb Transfers in Motivic Homotopy Theory

Becker and Gottlieb introduced their eponymous transfer maps in [BG75] as a tool for giving
a simple proof of the Adams conjecture. They considered a compact Lie group G and a �ber
bundle E B over a �nite CW complex with structure group G and whose �ber F is a closed
smooth manifold with a smooth action byG . There is a smoothG-equivariant embedding F ⊂ V
of F into a �nite dimensional representation V of G. There is an associated Pontryagin–Thom
collapse map SV F ν where ν is the normal bundle of F in V and F ν is its Thom space.
Denoting by τ the tangent bundle of F one obtains a morphism

SV F ν F τ ⊕ν ' F+ ∧ S
V

inG-equivariant homotopy theory. Assuming that E B is associated to a principalG-bundle
Ẽ B one gets a map

Ẽ × SV Ẽ × (F+ ∧ S
V )

and passing to homotopy orbits with respect to the diagonal G-actions yields the transfer map
B+ E+ in the stable homotopy category.

This construction of the transfer was generalized in [DP80]. The map SV F+ ∧ S
V arises

from a duality datum in parameterized stable homotopy theory over the base space B.

Definition 2.1. A duality datum in a symmetric monoidal category consists of a pair of objects
X and X∨ with morphisms 1 coev X ⊗ X∨ and X∨ ⊗ X ev 1 such that the compositions

X coev⊗id X ⊗ X∨ ⊗ X id⊗ev X

and
X∨ id⊗coev X∨ ⊗ X ⊗ X∨ ev⊗id X∨

are identities. In this situation X∨ is said to be a right dual of X and X is said to be a left dual of
X∨. If X is additionally a right dual of X∨, then X is said to be strongly dualizable with dual X∨.

A duality datum in a symmetric monoidal∞–category C is a duality datum in the homotopy
category hC, see [Lur12, section 4.6.1].

Remark 2.2. In [Lev18], Levine de�nes a dual X∨ = Map(X , 1) for any object X in a closed
symmetric monoidal category. Then X is called strongly dualizable whenever the induced
morphism X∨ ⊗ X Map(X ,X ) is an equivalence. By [Lur12, Lemma 4.6.1.6] this coincides
with our de�nition.
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Dold and Puppe show that, for a �ber bundle E B with �ber a compact smooth manifold,
there is a duality datum in the homotopy category of B–parameterized spectra. It exhibits the
�berwise Thom spectrum of the �berwise stable normal bundle to E as a dual of the suspension
spectrum of E. They then show that the transfer in [BG75] is an instance of the following
general construction.

Definition 2.3. In a symmetric monoidal∞–category C, suppose that an object X is equipped
with a map ∆ : X X ⊗ C for some other object C . Furthermore, suppose that X is strongly
dualizable. The transfer of X with respect to ∆ is de�ned as the composition

trX ,∆ : 1 coev X ⊗ X∨ switch X∨ ⊗ X id⊗∆ X∨ ⊗ X ⊗ C ev⊗id 1 ⊗ C ' C .

If there can be no risk of confusion we write trX = trX ,∆.

In Appendix A we construct a symmetric monoidal ∞–category SH(B) for every smooth
ind-scheme B over a base scheme S . This enables us to extend the de�nition of the motivic
Becker–Gottlieb transfer in [Lev18].

Definition 2.4. For a smooth map f : E B between smooth ind-schemes over S with
E/B ∈ SH(B) strongly dualizable we de�ne the relative transfer Tr(f /B) : 1B E/B as
follows: Applying f# to the diagonal E E ×B E gives a morphism ∆ : E/B E/B ∧ E/B in
SH(B) and we set Tr(E/B) = Tr(f /B) = trE/B,∆.

Additionally, since π : B S is a smooth ind-scheme, we can de�ne the absolute transfer of
f as

Tr(f /S) = π#(Tr(f /B)) : E/S B/S .

Proposition 2.5. The motivic Becker–Gottlieb transfer enjoys the following properties.
(i) The transfer is additive in homotopy pushouts: Suppose X , Y , U and V are smooth ind-

schemes over a smooth ind-scheme B over S . Further suppose that there is a homotopy
cocartesian square

X/B U /B

V /B Y/B

in SH(B). Assume that Y/B,U /B and V /B are strongly dualizable. Then Tr(Y/B) is a sum
of the compositions

1B
Tr(U /B)

U /B Y/B

1B
Tr(V /B)

V /B Y/B

and

1B
Tr(X /B)

X/B Y/B

in SH(B).
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(ii) The relative transfer is compatible with pullback: If p : B′ B and f : E B are maps
of smooth ind-schemes over S and E/B is strongly dualizable in SH(B) then the pullback
p∗(E/B) ' (E ×B B′)/B′ is strongly dualizable in SH(B′) and Tr(p∗ f /B′) ' p∗ Tr(f /B).

(iii) The absolute transfer is natural in cartesian squares: If

E ′ E

B′ B

f ′ f

is a cartesian square of smooth ind-schemes over S and the vertical maps are smooth, then
the square

E ′/S E/S

B′/S B/S

Tr(f ′/S ) Tr(f /S )

commutes in SH(S).

To prove part (i) of Proposition 2.5 we appeal to a general additivity result of May’s. In the
context of symmetric monoidal triangulated categories, [May01] proves that the transfer is
additive in distinguished triangles. However, since duality in symmetric monoidal∞–categories
is characterised at the level of homotopy categories, May’s theorem admits the following
reformulation.

Theorem 2.6 ([May01, Theorem 1.9]). Let C be a symmetric monoidal stable ∞–category and
let X Y Z be a co�ber sequence in C. Assume C ∈ C is such that _⊗C preserves co�ber
sequences. Suppose that Y is equipped with a map ∆Y : Y Y ⊗ C and that X and Y are
strongly dualizable. Then Z is strongly dualizable and there are maps ∆X and ∆Z such that

X Y Z

X ⊗ C Y ⊗ C Z ⊗ C

∆X ∆Y ∆Z

commutes. Furthermore, we have trY ,∆Y = trX ,∆X + trZ ,∆Z in π0 MapC(1,C).

Proof of Proposition 2.5, (i). The homotopy cocartesian square induces a co�ber sequence

U /B ∨V /B Y/B S1 ∧ X/B
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in SH(B). Shifting this sequence yields and introducing diagonal maps gives a diagram

X/B U /B ∨V /B Y/B

X/B ∧ X/B (U /B ∧U /B) ∨ (V /B ∧V /B)

X/B ∧ Y/B (U /B ∨V /B) ∧ Y/B Y/B ∧ Y/B

∆X ∆U ∨∆V

∆Y

(1) (2)

in which the outer two rows are co�ber sequences and the maps (1) and (2) are induced from
the maps X/B Y/B, U /B Y/B and V /B Y/B respectively. Then we can conclude
using Theorem 2.6. �

Part (ii) of Proposition 2.5 is proven in [Lev18, Lemma 1.6]. We formulate the proof of part
(iii) as a lemma.

Lemma 2.7. Let S be a scheme and B and B′ smooth ind-schemes over S . Suppose that f : E B
is smooth with E/B ∈ SH(B) strongly dualizable and

E ′ E

B′ B

i′

f ′ f

i

is cartesian. Then the square

E ′/S E/S

B′/S B/S

i′/S

i/S

Tr(f ′/S ) Tr(f /S )

is homotopy commutative.

Proof. Write p : B′ S and q : B S for the structure morphisms. There is a natural
transformation p#i

∗ q# de�ned as the composition

p#i
∗ unit p#i

∗q∗q# ' p#p
∗q#

counit q#.

Consequently, we obtain a homotopy commutative diagram

B′/S = p#p
∗1S p# f

′
# i
′∗ f ∗q∗1S = E ′/S

p#i
∗q∗1S p#i

∗ f# f
∗q∗1S

B/S = q#q
∗1S q# f# f

∗q∗1S = E/S .

p# Tr(f ′/B′)

Ex∗#
p#i∗ Tr(f /B)

q# Tr(f /B)

6



Chasing through the de�nition of p#i∗ q# shows that the leftmost composite vertical map
is i/S and that the rightmost vertical map is i ′/S . �

Finally, we will need some tools to understand when a smooth morphism E B of smooth
ind-schemes over S determines a strongly dualizable object E/B inSH(B). We have the following
formulation of motivic Atiyah duality.

Theorem 2.8 (see [Voe01], [Rio05], [Ayo07b], [CD09]). If Y X is a smooth and proper
morphism of schemes, then Y/X ∈ SH(X ) is strongly dualizable.

Because the property of being strongly dualizable is formulated in the homotopy category, it
is immediate that any smooth scheme Y X such that Y/X is A1-homotopy equivalent to a
smooth and proper scheme over X de�nes a strongly dualizable object in SH(X ). Furthermore,
dualizability is local in the following sense.

Theorem 2.9 ([Lev18, Proposition 1.2, Theorem 1.10]). Let B be a scheme over S . Suppose that
E ∈ SH(B) and there is a �nite Nisnevich covering family {ji : Ui B} and that j∗i E ∈ SH(Ui )

is strongly dualizable. Then E is strongly dualizable as well.
If E B is a Nisnevich–locally trivial �ber bundle with smooth �ber F and B is smooth

over S , then E/B is strongly dualizable in SH(B) if F/S is strongly dualizable in SH(S)

3. Transfers of Grassmannians

Definition 3.1. The ind-scheme Grr is the sequential colimit of the Grassmannians Grr (n) of
r–planes in n–space along the canonical closed immersions Grr (n) Grr (n + 1).

It is well known that Grr is a model for BGLr in the A1–homotopy category. In fact, let
Ur (N ) be the scheme of monomorphisms Or ON . Along ON ⊕ 0 ⊂ ON+1, there are
closed embeddings Ur (N ) Ur (N + 1) and [MV99, Proposition 4.3.7] shows that the colimit
Ur (∞) = colimN Ur (N ) along these embeddings is contractible in H(S). Also, the quotient
Ur (N )/GLr is isomorphic to Grr (N ) and consequently Ur (∞)/GLr � Grr is a model for BGLr .

Direct sum de�nes a morphism Ur (N ) × Un−r (N ) Un(2N ) which is equivariant with
respect to the block diagonal inclusion GLr × GLn−r GLn . Passing to the colimit N ∞

and taking quotients yields a morphism

ir ,n : Grr × Grn−r Grn .

This morphism is equivalent in H(S) to the map BGLr × BGLn−r BGLn induced by the
block diagonal inclusion GLr × GLn−r ⊂ GLn . The goal of this section is to develop a partial
inductive description of the absolute transfer trn,r : Grn,+ Grr ,+ ∧ Grn−r ,+ of ir ,n in SH(S).
For this purpose a di�erent version of ir ,n in H(S) will be more convenient.

7



Lemma 3.2. In H(S) there is an equivalence Grr × Grn−r Un(∞)/(GLr × GLn−r ). Along this
equivalence, ir ,n corresponds to the quotient

ir ,n : Un(∞)/(GLr × GLn−r ) Un(∞)/GLn � Grn

by GLn .

Proof. Writing φ : Ur (N ) ×Un−r (N ) Un(2N ) for the map induced by taking direct sums, we
obtain a commutative diagram

Ur (N ) ×Un−r (N ) Un(2N )

Grr (N ) × Grn−r (N ) Un(2N )/(GLr × GLn−r )

Grn(2N ).

φ

ir ,n

Passing to the colimit N ∞ the horizontal maps become equivalences. �

Lemma 3.3. The morphism ir ,n is a Zariski–locally trivial bundle over Grn . Its �ber is the quotient
GLn/(GLr × GLn−r ).

Proof. By construction, the morphism ir ,n is isomorphic to the colimit of the quotient maps
Un(N )/(GLr × GLn−r ) Un(N )/GLn � Grn(N ). But these are all Zariski–locally trivial with
�ber GLn/(GLr × GLn−r ). �

We note that GLn/(GLr × GLn−r ) is equivalent to Grr (n) in H(S) and this equivalence is
compatible with the respective GLn actions. This is shown in [AHW18, Lemma 3.1.5] and implies
in particular that the image in SH(Grn) of the associated bundle Un(∞) ×

GLn Grr (n) Grn
is equivalent to that of the quotient Un(∞)/(GLr × GLn−r ) Grn .

Lemma 3.4. The morphism ir ,n : Un(∞)/(GLr × GLn−r ) Grn de�nes a strongly dualizable
object Gr ,n ∈ SH(Grn).

Proof. By Lemma A.3 it will be enough to show that the pullback i : E Grn(N ) of ir ,n
along the inclusion Grn(N ) Grn de�nes a dualizable object in SH(Grn(N )) for all N .
But, by Lemma 3.3 the morphism i is a Zariski-locally trivial �ber bundle over Grn(N ) with
�ber X = GLn/(GLr × GLn−r ). Hence, to show that i de�nes a strongly dualizable object in
SH(Grn(N )), by Theorem 2.9 it is enough to show that X/S ∈ SH(S) is strongly dualizable.

But we have seen that X ' Grr (n) in H(S) and therefore also in SH(S). The scheme Grr (n)
is smooth and proper over S , so motivic Atiyah duality, Theorem 2.8, implies that Grr (n)/S and
therefore also X/S is strongly dualizable in SH(S), see for example [Lev18, Proposition 1.2]. �
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Lemma 3.5. Suppose r < n. The open complement of the closed immersion Grr (n − 1) Grr (n)
is the total space of an a�ne space bundle of rank n − r over Grr−1(n − 1).
Dually, the complement of the closed immersion Grr−1(n − 1) Grr (n) is the total space of

an a�ne space bundle of rank r over Grr (n − 1).

Proof. Suppose Spec(A) is an a�ne scheme mapping to S . On Spec(A)–valued points, the
inclusion Grr (n − 1) Grr (n) is given by considering a projective submodule P of An−1 as a
submodule ofAn = An−1⊕A. It follows that the complementU of Grr (n−1) has Spec(A)–valued
points

U (SpecA) = {P ⊂ An : P is projective of rank r and P 1 An−1 ⊕ 0}.

Given P ∈ U (SpecA), the module P ∩ (An−1 ⊕ 0) will be locally free of rank r − 1. This gives a
map φ : U Grr−1(n−1)which is trivial over the standard Zariski–open cover of Grr−1(n−1)
with �ber An−r .

The dual statement is proved similarly. In fact, the bundle V Grr (n − 1) in question is
the tautological r -plane bundle on Grr (n − 1). �

The decomposition Grr (n) = U ∪V of the last lemma yields a homotopy cocartesian square

U r Grr−1(n − 1) = U ∩V V ' Grr (n − 1)

Grr−1(n − 1) ' U Grr (n)

in the A1–homotopy category H(S). It is immediate that this decomposition of Grr (n) is stable
under the action of GLn−1×1 ⊂ GLn . We can therefore pass to the bundles over Grn−1 associated
to the universal GLn−1–torsor Un−1(∞) over Grn−1 and obtain a homotopy cocartesian square

(Un−1(∞) ×
GLn−1 (U ∩V ))/Grn−1 Gr ,n−1

Gr−1,n−1 (Un−1(∞) ×
GLn−1 Grr (n))/Grn−1

in SH(Grn−1).

Proposition 3.6. Suppose r < n and consider the composition

φ : Grn−1,+ incl Grn+
trn,r Grr+ ∧ Grn−r ,+

where incl is given by the assignment P P ⊕ A on Spec(A)–valued points. Then there is a
map ψ : Grn−1,+ Grr−1,+ ∧ Grn−r ,+ in SH(S) such that φ is the sum of the compositions

Grn−1,+
trn−1,r Grr ,+ ∧ Grn−1−r ,+ id∧ incl Grr ,+ ∧ Grn−r ,+

Grn−1,+
trn−1,r−1 Grr−1,+ ∧ Grn−r ,+ incl∧ id Grr ,+ ∧ Grn−r ,+
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and

Grr−1,+
ψ

Grr−1,+ ∧ Grn−r ,+ incl∧ id Grr ,+ ∧ Grn−r ,+.

Proof. Consider the homotopy pullback

E = Un−1(∞) ×
GLn−1 Grr (n) Grr × Grn−r

Grn−1 Grnincl

in H(S). By the discussion following Lemma 3.5 we obtain a co�ber sequence

X/Grn−1 Gr ,n−1 ∨Gr−1,n−1 E/Grn−1

in SH(Grn−1) where X = Un−1(∞) ×
GLn−1 (U ∩V ). Theorem 2.6 then shows that

trE/Grn−1 = trGr ,n−1 + trGr−1,n−1 − trX /Grn−1

in SH(Grn−1). Passing to the absolute transfer and using Lemma 2.7 yields that φ is the sum of
the compositions

Grn−1,+
trn−1,r Grr ,+ ∧ Grn−1−r ,+ id∧ incl Grr ,+ ∧ Grn−r ,+

Grn−1,+
trn−1,r−1 Grr−1,+ ∧ Grn−r ,+ incl∧ id Grr ,+ ∧ Grn−r ,+

and
Grn−1,+ X+ Grr ,+ ∧ Grn−r ,+

in SH(S). Here, the map X+ Grr ,+∧Grn−r ,+ is obtained from the inclusionU ∩V ⊂ Grr (n)
by passing to associated bundles. Now, this inclusion factors through the inclusion of U into
Grr (n). By Lemma 3.5 the inclusion Grr−1(n − 1) ⊂ U is an A1–equivalence, being the zero
section of an a�ne space bundle. Therefore X+ Grr ,+ ∧ Grn−r ,+ factors through the map
incl∧ id : Grr−1,+∧Grn−r ,+ Grr ,+∧Grn−r ,+. This way we obtain the mapψ and the required
decomposition of trn,r ◦ incl. �

4. Proof of the Theorem

We have the �ltration

Gr0,+
i1 Gr1,+

i2
. . .

in Grn,+ . . .
im Grm,+

and we have seen that for r ≤ n the map ir ,n : Grr × Grn−r Grn admits an absolute
transfer trn,r : Grn,+ Grr ,+ ∧ Grn−r ,+ in the motivic stable homotopy category SH(S).
Write fn,r : Grn,+ Grr ,+ for the composition

Grn,+
trn,r Grr ,+ ∧ Grn−r ,+

proj
Grr ,+
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and ϕn,r for the composition

Grn,+
fn,r Grr ,+ Grr /Grr−1.

Lemma 4.1. With notation as above, for r < n the compositions

Grn−1,+
in Grn,+

fn,r Grr ,+ Grr /Grr−1

and

Grn−1,+
fn−1,r Grr ,+ Grr /Grr−1

coincide.

Proof. By Proposition 3.6 the composition fn,r ◦ in is a sum of two compositions

Grn−1,+
trn−1,r Grr ,+ ∧ Grn−1−r ,+ id∧ incl Grr ,+ ∧ Grn−r ,+

proj
Grr ,+

and

Grn−1,+ Grr−1,+ ∧ Grn−r ,+ incl∧ id Grr ,+ ∧ Grn−r ,+
proj

Grr ,+

in SH(S). But the composition

Grr−1,+ incl Grr ,+ Grr /Grr−1

vanishes. Therefore, fn,r ◦ in coincides with the composition

Grn−1,+
fn−1,r Grr ,+ Grr /Grr−1

in SH(S). �

Proof of Theorem 1.1. Proceeding by induction on n, assume that

Φ =
n−1∨
r=0

ϕn−1,r : Grn−1,+
n−1∨
r=0

Grr /Grr−1

is an equivalence in SH(S). Because of Lemma 4.1 we have a commutative diagram

Grn,+

Grn−1,+
n−1∨
r=0

Grr /Grr−1

Φ′

Φ

in

11



where Φ′ =
∨n−1

r=0 ϕn,r . It follows that Φ−1 ◦ Φ′ ◦ in ' id, i. e. in admits a left inverse. That is to
say, the co�ber sequence

Grn−1,+
in Grn,+ Grn/Grn−1

splits and yields an equivalence

Grn,+
(Φ−1Φ′)∨ϕn,n Grn−1,+ ∨ Grn/Grn−1

since ϕn,n is by de�nition the canonical projection. Post-composing with Φ∨ id then shows that
the stable map Φ′ ∨ ϕn,n : Grn,+

∨n
r=0 Grr /Grr−1 is an equivalence in SH(S) as well. �

A. Stable Motivic Homotopy Theory of Smooth Ind-Schemes

We freely use the theory of presentable∞–categories as developed in [Lur09, section 5.5.3]. The
∞–category of presentable∞–categories with left adjoints as morphisms is denoted PrL while
the∞–category of presentable∞–categories with right adjoints as morphisms is denoted PrR.
There is an equivalence PrL ' (PrR)op of∞–categories which is the identity on objects and
sends a left adjoint functor to its right adjoint. Both PrL and PrR are complete and cocomplete
and the homotopy limits in both PrL and PrR coincide with homotopy limits in the∞–category
of∞–categories.

Definition A.1. A smooth ind-scheme over S is an object of Ind(SmS ), the ∞–category of
ind-objects in the category of smooth schemes over S with arbitrary morphisms between them.
A morphism of ind-schemes is smooth if it can be presented as a colimit of smooth morphisms
in SmS .

The goal of this section will be to generalize the de�nition of the stable motivic homotopy
category SH to smooth ind-schemes over S . Our approach is to use part of the six functor
formalism for SH, as established in [Ayo07b; Ayo07a] for noetherian schemes and extended to
arbitrary schemes in [Hoy14, Appendix C]. An overview of the standard functorialities, at least
at the level of triangulated categories, can be found in [CD09].

The �rst functoriality of SHcan be summarized as follows. For every morphism f : X Y
between smooth schemes over S we have an adjunction

f ∗ : SH(X ) ` SH(Y ) : f∗

between the stable presentable∞–categories SH(X ) and SH(Y ). These adjunctions assemble
into functors SH∗ : Smop

S PrL and SH∗ : SmS PrR which are naturally equivalent
after composing with the equivalence PrL ' (PrR)op. If f : X Y is smooth, then there is
an additional adjunction

f# : SH(Y ) ` SH(X ) : f ∗.
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These assemble into a functor SH# : SmS ,sm PrL from the wide subcategory of SmS
consisting of smooth morphisms between smooth schemes over S . There are various exchange
transformations associated with a cartesian square

• •

• •

д

q p

f

in SmS , of which we only mention the transformation

Ex∗# : д#q
∗ p∗ f#

when f and hence д is smooth. More details on these exchange transformations may be found
in [CD09].

Because PrR is cocomplete, the functor SH∗ naturally extends to a functor

SH∗ : Ind(SmS ) PrR

and we obtain a functor
SH∗ : Ind(SmS )

op PrL

by again composing with the equivalence PrL ' (PrR)op.
More explicitly, if (Xi )i ∈I is a �ltered diagram of smooth schemes over S and X = colimi Xi

as an ind-scheme over S , then

SH∗(X ) = holim
i

SH∗(Xi ) and SH∗(X ) = hocolim
i

SH∗(Xi ).

Note that SH∗(X ) and SH∗(X ) are equivalent ∞–categories since homotopy limits along
left adjoints in PrL correspond to homotopy colimits along their right adjoints in PrR, see
[Lur09, section 5.5.3]. This description of SH(X ) also shows that it inherits the structure
of a closed symmetric monoidal, stable, presentable ∞–category, see [Lur12, section 3.4.3,
Proposition 4.8.2.18].

The adjunction f ∗ a f∗ for a morphism f : X Y of ind-schemes is obtained by presenting
f as a colimit of maps fi : Xi Yi between schemes over S and then taking f ∗ to be the
functor induced on the homotopy limits in PrL and f∗ the functor induced on the homotopy
colimits in PrR.

It remains to construct the extra left-adjoint f# for a smooth map f between ind-schemes
over S . First, a morphism f : X Y between ind-schemes is smooth if and only if it is a
�ltered colimit of smooth maps fi : Xi Yi . Each f ∗i admits a left adjoint fi# and since PrR is
stable under limits, the functor f ∗ : SH∗(Y ) SH∗(X ) admits a left adjoint as well. That is
to say, SH∗ : Ind(SmS )

op PrL restricts to a functor SH∗ : Ind(SmS )
op
sm PrR from the

13



wide subcategory of Ind(SmS ) consisting of smooth maps between smooth ind-schemes over S .
Composing with the equivalence PrL ' (PrR)op then yields the functor

SH# : Ind(SmS )sm PrL.

In summary, we have the following proposition.

Proposition A.2. For every ind-scheme X over S , there is a closed symmetric monoidal, stable,
presentable ∞–category SH(X ). For every morphism f : X Y between ind-schemes there is
an associated adjunction

f ∗ : SH(Y ) ` SH(X ) : f∗
with f ∗ a monoidal functor. If f is smooth then there is an additional adjunction

f# : SH(X ) ` SH(Y ) : f ∗.

These data are functorial in f and admit various natural exchange transformations. If X happens
to be a smooth scheme over S then this version of SH(X ) is naturally equivalent to the usual
construction.

Following [Lev18], for a smooth morphism f : X Y of ind-schemes over S we de�ne
X/Y = f#(1X ) ∈ SH(Y ) where 1X denotes the monoidal unit in SH(X ). In particular, if Y = S ,
we see that any smooth ind-scheme X over S determines an object X/S ∈ SH(S). If X is a
smooth scheme over S , then X/S is canonically equivalent to the P1–suspension spectrum of X
in SH(S); see [Ayo14, Lemma C.2].

Lemma A.3. Suppose B is a smooth ind-scheme over S and E ∈ SH(B). If B is presented as a
�ltered colimit B = colimi Bi of smooth schemes in Ind(SmS ), let fi : Bi B be the canonical
map for each i . Then E ∈ SH(B) is strongly dualizable if and only if f ∗i E ∈ SH(Bi ) is strongly
dualizable for every i .

Proof. This follows from [Lur12, Proposition 4.6.1.11] since we have SH(B) ' limi SH(Bi ). �

Proposition A.4. Suppose an ind-scheme X is presented as a colimit X = colimi Xi in Ind(SmS ).
Then there is a natural equivalence X/S ' hocolimi Xi/S in SH(S).

Proof. Write π : X S and πi : Xi S for the structure morphisms. Suppose Y ∈ SH(S) is
arbitrary. Then we have natural equivalences

MapSH(S )(π#1X ,Y ) ' MapSH(X )(1X , π
∗Y )

' holim
i

MapSH(Xi )(1Xi , π
∗
i Y )

' holim
i

MapSH(S )(πi#1Xi ,Y )

' MapSH(S )(hocolim
i

Xi/S,Y )

of mapping spaces. The Yoneda lemma implies that X/S = π#1X ' hocolimi Xi/S in SH(S). �

14



This proposition allows us to extend the de�nition of the functor _/S : SmS SH(S)
in [Lev18] to ind-schemes. The functor _/S : SmS SH(S) extends uniquely up to nat-
ural equivalence to a functor _/S : Ind(SmS ) SH(S) because SH(S) is cocomplete. By
Proposition A.4 this coincides on objects with the previous construction π#(1X ) for a smooth
ind-scheme π : X S .

References
[AHW18] A. Asok, M. Hoyois, and M. Wendt. “A�ne representability results in A1-homotopy theory, II: Principal

bundles and homogeneous spaces”. Geom. Topol. 22.2 (2018), pp. 1181–1225. issn: 1465-3060. doi:
10.2140/gt.2018.22.1181. url: https://doi.org/10.2140/gt.2018.22.1181 (cit. on p. 8).

[Ayo07a] J. Ayoub. “Les six opéerations de Grothendieck et le formalisme des cycles évanescents dans le monde
motivique. II”. Astérisque 315 (2007). issn: 0303-1179 (cit. on p. 12).

[Ayo07b] J. Ayoub. “Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde
motivique. I”. Astérisque 314 (2007). issn: 0303-1179 (cit. on pp. 7, 12).

[Ayo14] J. Ayoub. “La réalisation étale et les opérations de Grothendieck”. Ann. Sci. Éc. Norm. Supér. (4) 47.1
(2014), pp. 1–145. issn: 0012-9593. doi: 10.24033/asens.2210. url: https://doi.org/10.24033/
asens.2210 (cit. on p. 14).

[BG75] J. C. Becker and D. H. Gottlieb. “The transfer map and �ber bundles”. Topology 14 (1975), pp. 1–12.
issn: 0040-9383. doi: 10.1016/0040-9383(75)90029-4. url: https://doi.org/10.1016/0040-
9383(75)90029-4 (cit. on pp. 3, 4).

[CD09] D.-C. Cisinski and F. Déglise. “Triangulated categories of mixed motives”. ArXiv e-prints (Dec. 2009).
arXiv: 0912.2110 [math.AG] (cit. on pp. 7, 12, 13).

[DP80] A. Dold and D. Puppe. “Duality, trace, and transfer”. In: Proceedings of the International Conference on
Geometric Topology (Warsaw, 1978). PWN, Warsaw, 1980, pp. 81–102 (cit. on p. 3).

[Hoy14] M. Hoyois. “A quadratic re�nement of the Grothendieck-Lefschetz-Verdier trace formula”. Algebr.
Geom. Topol. 14.6 (2014), pp. 3603–3658. issn: 1472-2747. doi: 10.2140/agt.2014.14.3603. url:
https://doi.org/10.2140/agt.2014.14.3603 (cit. on pp. 2, 12).

[Lev18] M. Levine. “Motivic Euler characteristics and Witt-valued characteristic classes”. ArXiv e-prints (June
2018). arXiv: 1806.10108 [math.AG] (cit. on pp. 2–4, 6–8, 14, 15).

[Lur09] J. Lurie. Higher topos theory. Vol. 170. Annals of Mathematics Studies. Princeton University Press,
Princeton, NJ, 2009. isbn: 978-0-691-14049-0. doi: 10.1515/9781400830558 (cit. on pp. 2, 12, 13).

[Lur12] J. Lurie.Higher Algebra. 2012. url: http://www.math.harvard.edu/~lurie/papers/HigherAlgebra.
pdf (cit. on pp. 2, 3, 13, 14).

[May01] J. P. May. “The additivity of traces in triangulated categories”. Adv. Math. 163.1 (2001), pp. 34–73. issn:
0001-8708. doi: 10.1006/aima.2001.1995. url: https://doi.org/10.1006/aima.2001.1995
(cit. on pp. 2, 5).

[MP89] S. A. Mitchell and S. B. Priddy. “A double coset formula for Levi subgroups and splitting BGLn”. In:
Algebraic topology (Arcata, CA, 1986). Vol. 1370. Lecture Notes in Math. Springer, Berlin, 1989, pp. 325–
334. doi: 10.1007/BFb0085237. url: https://doi.org/10.1007/BFb0085237 (cit. on pp. 1, 2).

[MV99] F. Morel and V. Voevodsky. “A1-homotopy theory of schemes”. Inst. Hautes Études Sci. Publ. Math. 90
(1999), 45–143 (2001). issn: 0073-8301. url: http://www.numdam.org/item?id=PMIHES_1999__90_
_45_0 (cit. on pp. 2, 7).

15

https://doi.org/10.2140/gt.2018.22.1181
https://doi.org/10.2140/gt.2018.22.1181
https://doi.org/10.24033/asens.2210
https://doi.org/10.24033/asens.2210
https://doi.org/10.24033/asens.2210
https://doi.org/10.1016/0040-9383(75)90029-4
https://doi.org/10.1016/0040-9383(75)90029-4
https://doi.org/10.1016/0040-9383(75)90029-4
https://arxiv.org/abs/0912.2110
https://doi.org/10.2140/agt.2014.14.3603
https://doi.org/10.2140/agt.2014.14.3603
https://arxiv.org/abs/1806.10108
https://doi.org/10.1515/9781400830558
http://www.math.harvard.edu/~lurie/papers/HigherAlgebra.pdf
http://www.math.harvard.edu/~lurie/papers/HigherAlgebra.pdf
https://doi.org/10.1006/aima.2001.1995
https://doi.org/10.1006/aima.2001.1995
https://doi.org/10.1007/BFb0085237
https://doi.org/10.1007/BFb0085237
http://www.numdam.org/item?id=PMIHES_1999__90__45_0
http://www.numdam.org/item?id=PMIHES_1999__90__45_0


[Rio05] J. Riou. “Dualité de Spanier-Whitehead en géométrie algébrique”. C. R. Math. Acad. Sci. Paris 340.6
(2005), pp. 431–436. issn: 1631-073X. doi: 10.1016/j.crma.2005.02.002. url: https://doi.org/10.
1016/j.crma.2005.02.002 (cit. on p. 7).

[Rob15] M. Robalo. “K-theory and the bridge from motives to noncommutative motives”. Adv. Math. 269 (2015),
pp. 399–550. issn: 0001-8708. doi: 10.1016/j.aim.2014.10.011. url: https://doi.org/10.1016/j.
aim.2014.10.011 (cit. on p. 2).

[Sna78] V. Snaith. “Stable decompositions of classifying spaces with applications to algebraic cobordism theories”.
In: Algebraic topology (Proc. Conf., Univ. British Columbia, Vancouver, B.C., 1977). Vol. 673. Lecture Notes
in Math. Springer, Berlin, 1978, pp. 123–157 (cit. on p. 1).

[Sna79] V. P. Snaith. “Algebraic cobordism and K-theory”. Mem. Amer. Math. Soc. 21.221 (1979), pp. vii+152.
issn: 0065-9266. doi: 10.1090/memo/0221. url: https://doi.org/10.1090/memo/0221 (cit. on p. 1).

[Voe01] V. Voevodsky. Lectures on Cross Functors. 2001. url: http://www.math.ias.edu/vladimir/files/
2015_transfer_from_ps_delnotes01.pdf (cit. on p. 7).

16

https://doi.org/10.1016/j.crma.2005.02.002
https://doi.org/10.1016/j.crma.2005.02.002
https://doi.org/10.1016/j.crma.2005.02.002
https://doi.org/10.1016/j.aim.2014.10.011
https://doi.org/10.1016/j.aim.2014.10.011
https://doi.org/10.1016/j.aim.2014.10.011
https://doi.org/10.1090/memo/0221
https://doi.org/10.1090/memo/0221
http://www.math.ias.edu/vladimir/files/2015_transfer_from_ps_delnotes01.pdf
http://www.math.ias.edu/vladimir/files/2015_transfer_from_ps_delnotes01.pdf

	Introduction
	Becker–Gottlieb Transfers in Motivic Homotopy Theory
	Transfers of Grassmannians
	Proof of the Theorem
	Stable Motivic Homotopy Theory of Smooth Ind-Schemes

